Congestion Control Model

Users are indexed by i

aggregate utility $\max . \sum_{i} U_{i}\left(x_{i}\right)$
s.t. $R x \leq c$
\dagger
capacity constraints

Congestion control provides fair rate allocation amongst users

Traffic Engineering Model

Links are indexed by l

> Traffic engineering avoids bottlenecks in the network

Motivation

To balance performance and robustness, we chose max. $\sum_{i} U_{i}\left(x_{i}\right)-\sum_{f} f\left(u_{j}\right)$ as our objective.

Design Goals

Stable Optimal

Theoretical Results

- Theorem 1: The DATE algorithm converges to the optimum of $\max . \sum_{i} U_{i}\left(x_{i}\right)-\sum_{i} f\left(u_{i}\right)$ for sufficiently small step sizes.

Achieving Stability

- Distributed routing can be unstable.

If you initially route on the top path, then the bottom path is not loaded, causing oscillations.

- Problem: No coordination between measured link load and target link load.
- We introduce consistency price to perform the coordination.

Implementation Challenges

Router Hardware:

- Per flow policing
- Edge routers need to split traffic

Router Software:

- Establishing multiple paths between edge routers
- Frequent link utilization feedback
- Added computation at routers

Conclusions

- DATE balances performance for users and robustness for the network.
- Theoretical analysis shows DATE is stable, optimal and distributed.
- Ongoing simulations will test implementability and efficiency.
- Can explore an architecture where only long-lived flows are routed using DATE.

