Congestion Control Model

Users are indexed by *i*

Utility $U_i(x_i)$ $U_i(x_i)$ $U_i(x_i)$ $U_i(x_i)$ $U_i(x_i)$ $S.t. \quad Rx \leq c$ f Throughput x_i $Throughput x_i$

> Congestion control provides fair rate allocation amongst users

Traffic Engineering Model

Links are indexed by *l* Cost $f(u_l)$ $u_l = 1$ $i_l f(u_l)$ $u_l = 1$ $i_l g(u_l)$ aggregate cost

Link Utilization *u*_l

Traffic engineering avoids bottlenecks in the network

Motivation

To balance performance and robustness, we chose max. $\sum_{i} U_i(x_i) - \sum_{l} f(u_l)$ as our objective.

Theoretical Results

• Theorem 1: The DATE algorithm converges to the optimum of max. $\sum_{i} U_{i}(x_{i}) - \sum_{l} f(u_{l})$ for sufficiently small step sizes.

Achieving Stability

• Distributed routing can be unstable.

If you initially route on the top path, then the bottom path is not loaded, causing oscillations.

- Problem: No coordination between measured link load and target link load.
- We introduce consistency price to perform the coordination.

Implementation Challenges

Router Hardware: - Per flow policing - Edge routers need to split traffic

Router Software:

- Establishing
 multiple paths
 between edge
 routers
- Frequent link
 utilization feedback
- Added computation at routers

Conclusions

- DATE balances performance for users and robustness for the network.
- Theoretical analysis shows DATE is stable, optimal and distributed.
- Ongoing simulations will test implementability and efficiency.
- Can explore an architecture where only long-lived flows are routed using DATE.